Abstract
The Rho family GTPase Rac1 mediates a variety of signal transduction processes leading to activation of NADPH oxidase, actin cytoskeleton reorganization, transcription activation, and stimulation of DNA synthesis. In this study, Rac1 was found to form a reversible monomer and oligomer in both the GDP- and GTP-bound states in vitro and in cells. Mutational analysis and peptide competition experiments showed that the unique C-terminal domain of Rac1 consisting of six consecutive basic residues (amino acids 183-188) is required for the homophilic interaction. Oligomerization of Rac1-GTP led to a self-stimulatory GTPase-activating protein (GAP) activity, resulting in a significantly enhanced intrinsic GTP hydrolysis rate of Rac1-GTP. Deletion or mutation of the polybasic residues drastically decreased its intrinsic GTPase activity and resulted in a loss of the self-stimulatory GAP activity. In the oligomeric state, Rac1 became insensitive to the RhoGAP stimulation, albeit maintaining the responsiveness to the guanine nucleotide exchange factor. The ability of the Rac1 C-terminal mutants to activate the effector p21(cdc42/rac)-activated kinase-1 correlated with their oligomerization states, suggesting that oligomer formation potentiates effector activation. Furthermore, the oligomer-to-monomer transition of Rac1-GDP could be driven effectively by interaction with the Rho guanine nucleotide dissociation inhibitor. Building on previous characterizations of Rac1 interaction with regulatory proteins and effectors, these results suggest that Rac1 may employ yet another means of regulation by cycling between the monomeric and oligomeric states to effectively generate a transient and augmented signal.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have