Abstract
The Rev protein of human immunodeficiency virus type 1 is a sequence-specific RNA binding protein that is essential for viral replication. Here we present evidence that Rev is a stable oligomer both in vitro and in vivo. Analysis of Rev mutants indicates that oligomerization is essential for RNA binding and hence Rev function. The oligomerization and RNA binding domains overlap over 47 amino acids. Within this region is a short arginine-rich motif found in a large class of RNA binding proteins. Substitution of multiple residues within the arginine-rich motif abolishes oligomerization, whereas several single-amino-acid substitution mutants oligomerize but do not bind RNA. Thus, Rev's arginine-rich motif participates in two distinct functions: oligomerization and RNA binding.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have