Abstract

BackgroundPreviously, we showed that the intake of trans fatty acids during pregnancy and lactation triggers a pro-inflammatory status in the offspring. On the other hand, prebiotics can alter the intestinal environment, reducing serum lipopolysaccharides (LPS) concentrations. This study evaluated the effect of the oligofructose 10% diet supplementation in the presence or absence of hydrogenated vegetable fat during pregnancy and lactation on the development, endotoxemia and bacterial composition of 21-d-old offspring.MethodsOn the first day of pregnancy rats were divided into four groups: control diet (C), control diet supplemented with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat, rich in TFA (T) or diet enriched with hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and lactation. At birth, 7th, 14th and 21th, pups were weighed and length was measured. Serum concentrations of LPS and free fatty acids (FFA) were performed by specific kits. Bacterial DNA present in faeces was determined by real-time PCR. Data were expressed as mean ± standard error of the mean and the statistical analysis was realized by ANOVA two-way and ANOVA for repeated measures. p < 0.05 was considered significant.ResultsWe observed that the oligofructose (10%) supplementation during pregnancy and lactation reduced body weight, body weight gain, length and serum FFA in the CF and TF group compared to C and T group respectively, of the 21-day-old offspring, accompanied by an increase in serum LPS and genomic DNA levels of lactobacillus spp. on faeces of the CF group in relation to C group.ConclusionIn conclusion, dam’s diet supplementation with 10% of oligofructose during pregnancy and lactation, independent of addition with hydrogenated vegetable fat, harms the offspring development, alters the bacterial composition and increases the serum concentrations of lipopolysaccharides in 21d-old pups.

Highlights

  • We showed that the intake of trans fatty acids during pregnancy and lactation triggers a pro-inflammatory status in the offspring

  • Previous studies from our laboratory demonstrated that the maternal intake of hydrogenated vegetable fats that are rich in trans fatty acids (TFA) during pregnancy and lactation triggers changes in the lipid metabolism and decreases serum levels of adiponectin in 21-d-old pups

  • The authors reported that the consumption of TFA during lactation induces the development of metabolic disorders, including insulin resistance and the increased gene expression of plasminogen activator inhibitor type-1 (PAI-1) in the adipose tissue of the adult offspring [10,11]

Read more

Summary

Introduction

We showed that the intake of trans fatty acids during pregnancy and lactation triggers a pro-inflammatory status in the offspring. Previous studies from our laboratory demonstrated that the maternal intake of hydrogenated vegetable fats that are rich in trans fatty acids (TFA) during pregnancy and lactation triggers changes in the lipid metabolism and decreases serum levels of adiponectin in 21-d-old pups. These findings were accompanied by increases in TNF-α gene expression and the protein expression of TRAF-6 (TNF receptor-associated factor 6) in the adipose tissue [8,9]. Elevated PAI-1 serum concentrations (eg. in obesity) are associated with pro-thrombotic effects, which increase the risk for cardiovascular disease [13,14]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.