Abstract

Using a conditioning paradigm, the olfactory sensitivity of three squirrel monkeys and three pigtail macaques for homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone), symmetrical ketones (3-pentanone to 6-undecanone), and C7-ketones (2-heptanone to 4-heptanone) was assessed. In the majority of cases, the animals of both species significantly discriminated concentrations below 1 ppm from the odorless solvent, and with 2-nonanone and 5-nonanone the monkeys even demonstrated thresholds below 1 ppb. The results showed both primate species have a well-developed olfactory sensitivity for aliphatic ketones, and pigtail macaques generally perform better than squirrel monkeys in detecting members of this class of odorants. Further, in both species tested, we found a significant negative correlation between perceptibility in terms of olfactory detection thresholds and carbon-chain length of both the 2-ketones and the symmetrical ketones, but not between detection thresholds and position of the functional group with the C7-ketones. These findings lend further support to the growing body of evidence suggesting that between-species comparisons of the number of functional olfactory receptor genes or of neuroanatomical features are poor predictors of olfactory performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.