Abstract
Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and several of their isomeric forms was investigated. With all 11 odorants, the animals significantly discriminated concentrations as low as 0.01 ppm (parts per million) from the solvent, and with two odorants (2-octanone and 5-nonanone), the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the 2-ketones and carbon chain length can best be described as a U-shaped function with the lowest threshold values at 2-octanone. Similarly, the correlation between olfactory sensitivity and carbon chain length of symmetrical ketones (3-pentanone to 6-undecanone) can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory detection thresholds of the mice and position of the functional carbonyl group attached to a C7 backbone. A comparison between the olfactory detection thresholds obtained here with those obtained in earlier studies suggests that mice are significantly more sensitive for 2-ketones than for n-carboxylic acids of the same carbon chain length. Across-species comparisons suggest that mice are significantly more sensitive for aliphatic ketones than squirrel monkeys and pigtail macaques, whereas the ranges of human olfactory detection threshold values overlap with those of the mice with seven of the 11 ketones tested. Further comparisons suggest that odor structure-activity relationships are both substance class and species specific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.