Abstract
Telencephalic evolution in ray-finned fishes shows increasing complexity from polypteriform fishes through sturgeons to teleosts. Telencephalic organization in sturgeons is thus critical to our understanding of ray-finned fish evolution, but it is poorly understood, particularly as regards the roof or pallium. Two major hypotheses exist regarding the medial part of area dorsalis (Dm): that Dm is extended; and that Dm is restricted. The extent and topography of secondary olfactory projections to the pallium are critical in evaluating these hypotheses, but there is little agreement regarding these projections. Olfactory projections in the white sturgeon were therefore examined by using the carbocyanine probe DiI, biocytin, and biotinylated dextrin amine (BDA). Both DiI and BDA revealed primary olfactory projections to the olfactory bulb and primary extrabulbar projections widely in the telencephalon and to more restricted regions of the diencephalon. Myelinated secondary olfactory fibers caused DiI to be less effective in labeling secondary olfactory projections, which terminate in all subpallial nuclei and in the pallium: sparsely in the medial pallial division (Dm); heavily in the posterior pallial division (Dp); and more lightly in the lateral pallial division (Dl). In the diencephalon, substantial secondary olfactory projections were seen to the habenular nuclei, the rostral pole of the inferior lobe, and several nuclei of the posterior tubercle. All secondary olfactory projections were bilateral but heavier ipsilaterally. Bulbopetal neurons were located in both pallial and subpallial centers and were more numerous ipsilaterally. These results corroborate an earlier experimental study on the shovelnose sturgeon and indicate a restricted Dm in sturgeons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have