Abstract

Olfactory ensheathing cells (OECs) are the chief glial population of the mammalian olfactory nervous system, residing in the olfactory mucosa and at the surface of the olfactory bulb. We investigated the neurochemical features of OECs in a variety of mammalian species (including adult hamsters, rabbits, monkeys, and mice, as well as fetal pigs) using three biomarkers: α-smooth muscle actin (αSMA), S100β, and glial fibrillary acidic protein (GFAP). Mucosal and bulbar OECs from all five mammalian species express S100β. Both mucosal and bulbar OECs of monkeys express αSMA, yet only bulbar OECs of hamsters and only mucosal OECs of rabbits express αSMA as well. Mucosal OECs, but not bulbar OECs, also express GFAP in hamsters and monkeys; mice, by comparison, have only a sparse population of OECs expressing GFAP. Though αSMA immunostaining is not detected in OECs of adult mice, GFAP-expressing mucosal OECs isolated from adult mice do coexpress αSMA in vitro. Moreover, mucosal OECs from adult mutant mice lacking αSMA expression display perturbed cellular morphology (i.e., fewer cytoplasmic processes extending among the hundreds of olfactory axons in the olfactory nerve fascicles and nuclei having degenerative features). In sum, these findings highlight the efficacy of αSMA and S100β as biomarkers of OECs from a variety of mammalian species. These observations provide definitive evidence that mammalian OECs express the structural protein αSMA (at various levels of detection), which appears to play a pivotal role in their ensheathment of olfactory axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call