Abstract
The role of unsaturated fatty acids (UFAs) is essential for determining stem cell functions. Eph/Ephrin interactions are important for regulation of stem cell fate and localization within their niche, which is significant for a wide range of stem cell behavior. Although oleic acid (OA) and Ephrin receptors (Ephs) have critical roles in the maintenance of stem cell functions, interrelation between Ephs and OA has not been explored. Therefore, the present study investigated the effect of OA-pretreated UCB-MSCs in skin wound-healing and underlying mechanism of Eph expression. OA promoted the motility of UCB-MSCs via EphB2 expression. OA-mediated GPR40 activation leads to Gαq-dependent PKCα phosphorylation. In addition, OA-induced phosphorylation of GSK3β was followed by β-catenin nuclear translocation in UCB-MSCs. Activation of β-catenin was blocked by PKC inhibitors, and OA-induced EphB2 expression was suppressed by β-cateninsiRNA transfection. Of those Rho-GTPases, Rac1 was activated in an EphB2-dependent manner. Accordingly, knocking down EphB2 suppressed F-actin expression. In vivo skin wound-healing assay revealed that OA-treated UCB-MSCs enhanced skin wound repair compared to UCB-MSCs pretreated with EphB2siRNA and OA. In conclusion, we showed that OA enhances UCB-MSC motility through EphB2-dependent F-actin formation involving PKCα/GSK3β/β-catenin and Rac1 signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.