Abstract

Microsomes from young leaves of pea,Pisum sativum L., metabolized oleate principally by the reactions mediated by oleoyl-CoA synthetase, oleoyl-CoA thioesterase, oleoyl-CoA: phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase. Hydrogen peroxide specifically inhibited oleate desaturation and the evidence presented argues for a specific inhibition of the terminal enzyme of the desaturase system, i.e. oleoyl phosphatidylcholine desaturase. Catalase, ascorbic acid, or ascorbate peroxidase, in conjunction with ascorbic acid, stimulated oleate desaturation, possibly by the removal of hydrogen peroxide. Lysophosphatidylcholine was found to be the preferred acceptor for acyl transfer from oleoyl-CoA, which indicates that the transfer of oleoyl moieties was catalyzed predominantly by oleoyl-CoA:lysophosphatidylcholine acyltransferase. Acyl exchange between oleoyl-CoA and phosphatidylcholine, with a possible involvement of phospholipases, was also detected but at much lower rates than acyl transfer. When intact or broken chloroplasts were added to microsomes, which had been preincubated with oleoyl-CoA, some stimulation of the reactions catalyzed by oleoyl-CoA:phosphatidylcholine acyltransferase and oleoyl phosphatidylcholine desaturase was observed. However, only minor amounts of microsomal linoleoyl phosphatidylcholine were converted to galactolipids containing linolenoyl moieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call