Abstract

Coupling of presynaptic voltage-gated calcium channels to synaptic release machinery is critical for neurotransmission. It was traditionally believed that anchoring calcium channels close to the calcium micro-domain dependent release machinery was the main reason for the physical interactions between channels and synaptic proteins, however in recent years, it is becoming clear that these proteins additionally regulate channel activity, and such processes as channel targeting and alternative splicing, to orchestrate a much broader regulatory role in controlling calcium channel function, calcium influx, and hence neurotransmission. Calcium signalling serves a multitude of cellular functions and therefore requires tight regulation. Specific, often calcium-dependent interactions between synaptic proteins and calcium channels appear to play a significant role in fine-tuning of the synaptic response over development. While it is clear that investigation of a few of the multitude of synaptic proteins will not provide a complete understanding of calcium channel regulation, consideration of the emerging mechanisms by which synaptic protein interactions might regulate calcium channel function is important in order to understand their possible contributions to synaptic transmission. Here, we review the current state of knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.