Abstract
Abstract This paper presents a new algorithm for the detection of oil spill from SAR intensity images. The proposed algorithm combines the marked point process, Bayesian inference and Markov Chain Monte Carlo (MCMC) technique. In this paper, the candidates of oil spills or dark spots in a SAR intensity image are characterized by a Poisson marked point process. The marked point process is formed by a group of random points (as a point process modelling the locations of oil spills) and a set of parameters including geometric parameters of windows centred at the random points and gamma distribution parameters (as the marks attaching to each point). As a result, the candidates of oil spills are represented by a group of windows, in which the intensities of pixels follow independent and identical gamma distribution with lower mean than that for the identical gamma distribution of the pixels out of windows. Following the Bayesian paradigm, the posterior distribution, which characterizes the locations and statistical distributions of oil spills, can be obtained up to a normalizing constant. In order to simulate from the posterior distribution and to estimate the parameters of the posterior distribution, the Revisable Jump MCMC (RJMCMC) algorithm is used. The optimal locations and sizes of dark spots are obtained by a maximum a posteriori (MAP) algorithm. The proposed approach is tested using Radarsat-1 SAR images with oil spills indicated by human analysts. The results show that the proposed approach works well and is very promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.