Abstract

Oil spill detection is an important task for protecting and minimizing the harmful effects of oil on the marine ecosystem. Currently, the application of images from unmanned aerial vehicles, along with deep learning, is widely employed. Although these methods have yielded good results, the issue of oil spill classification based on these methods has not received much attention at present. In this research, a deep learning model with a dual attention mechanism consisting of two modules was utilized. The first module focuses on capturing the spatial relationships between each pixel and the entire image, the second module identifies the characteristics between channels in the image, thereby enhancing the ability to detect and classify oil. Additionally, a data augmentation technique based on the Generative Adversarial Networks model was refined and employed to improve the model's accuracy. Experimental results, obtained through comparisons between dataset construction methods, the use of different encoders and decoders, and adjustments hyperparameters, reveal that the best model achieves a mean Intersection over Union by 72.49%. Data augmentation techniques also contribute to a 2.56% increase in mean Intersection over Union. The findings of this research provide a feasible solution not only for detecting but also for classifying oil spills, thereby assisting marine environmental managers in making timely decisions to respond to oil spill accidents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.