Abstract

HypothesisThe current mechanism of surfactant enhanced oil recovery (EOR) mainly relies on forming middle-phase microemulsions to get ultra-low oil-water interfacial tension. However, residual oil can also be recovered using low concentration surfactant solutions without microemulsion formation, and the interaction between the surfactant solution and crude oil at very early contact has not been studied yet. We hypothesize micelle solubilization of oil as an alternative EOR mechanism. ExperimentsSodium dodecylbenzenesulfonate (SDBS), anisole and 1-hexene were used as a model surfactant and model polar and nonpolar compounds in crude oil, respectively. The interaction between SDBS micelles and these two additives was investigated with dynamic light scattering, UV–Vis spectroscopy, 1H NMR spectroscopy, cryogenic transmission electron microscopy, confocal microscope and small angle neutron scattering. FindingsSDBS micelles become larger upon increasing additive concentration to transfer into swollen micelles. 1-Hexene is localized in the micelle core, and retains the spherical micelle shape, while anisole resides in the palisade layer and weakens the electrostatic repulsions among surfactant headgroups, inducing a sphere–rod transition. No emulsion droplets were observed for 0.2 wt% SDBS solution until 1.5 wt% anisole or 1-hexene was introduced. These findings help understanding the role surfactant micelles in EOR and propose a new mechanism for surfactant EOR processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call