Abstract

Abstract An Engineered Geothermal System (EGS) pilot project was commissioned to prove the economic viability of an industrial scale geothermal heat plant in Finland. The project aims to generate 40 MW of emission free heat energy, supplying up to 10% of the city of Espoo’s district heating needs. Two wells of 6400 m MD and 6213 m MD (measured depth) were drilled through formations of hard, abrasive granitic gneiss with maximum measured 560 MPa UCS (unconfined compressive strength). Typical dull conditions of lost and worn cutting structure and gauge diameter wear of between 3/16-in to ¼-in contributed to excessive torque, stuck incidences, low rate of penetration (ROP) and difficulties achieving build rate. To address these drilling challenges, this paper explores the interplay between new cemented carbide compact technology, drill bit design, and drilling parameter road mapping. The directional section of the first well was drilled with an average ROP below 2 m/hr and run length averaging 56 m per bit. The well took 246 drilling days and 44 BHAs (bottom hole assemblies) to achieve TD (total depth). Between the first and second well an application specific drill bit design package and step-wise parameter program were implemented. Design enhancements included improved gauge protection, bit hydraulics for minimizing cone erosion and subsequent TCI (tungsten carbide insert) compact loss. Novel hybrid TCI materials technology was introduced having a 100% improvement in wear resistance and durability as compared with conventional grades, to drill these hard and abrasive granitic formations. New BHAs and drilling plan were selected based on the bit design selection to reduce wear on BHA components, improve directional control and reducing drilling dysfunctions. Once these factors were under control, a low risk approach to extending the bit revolution limits (krev) for the roller cone sealed bearings could be implemented based on downhole parameters and previous bit dulls, leading to longer run lengths. The combination of bit design and material enhancements with a properly selected BHA and drill plan increased run lengths and ROP. The second well’s 8.5-in directional section was drilled with a 13% increase in average ROP and a 69% increase in average run length without exceeding krev limits. Well on well, a 77 day reduction in AFE (authorization for expenditure) was realized. We demonstrated the combination of oil and gas bit and BHA design, drilling plan, and new cutting material capabilities can reduce EGS well construction costs in order to make these renewable energy sources economical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call