Abstract

The ohmic contact on n- and p-type SiC regions with the same contact metal is a key process in regard to creating high-performance MOSFETs and insulated gate bipolar transistors (IGBTs). The dependence of the contact resistance on n- and p-type SiC regions on ion species, dose, and implantation temperature was investigated. The results of such an investigation revealed that the amorphization of the SiC surface and the generation of 3C-SiC produce a low contact resistance without the need for a high-temperature metallization process. The contact resistances of 2.1 × 10−6 Ω cm2 on the n-type SiC region and 1.3 × 10−3 Ω cm2 on the p-type SiC region were obtained with high-dose ion implantation at room temperature on the n-type SiC region, high-dose ion implantation at high temperature on the p-type SiC region, and a titanium-based contact electrode. A SiC MOSFET was fabricated with the low-temperature ohmic contact process. The positive-bias gate leakage current markedly increased. It can be deduced that high-dose ion implantation at room temperature on the n-type SiC region degrades surface roughness on the N+ source region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.