Abstract

Tunnel junctions (TJs) have recently been proposed as a solution for several III-nitride current problems and to enhance new structures. Reported III-nitride TJs grown by metalorganic chemical vapor deposition (MOCVD) resulted in backward diodes with rectifying behavior in forward bias, even with Mg and Si doping in 1020 cm−3. This behavior limits applications in several device structures. We report a TJ structure based on p+In0.15Ga0.85N/n+In0.05Ga0.95N, where the n-side of the junction is co-doped with Si and Mg and with electron and hole concentrations in the mid-1019 cm−3 for both the n and p dopants. Co-doping creates deep levels within the bandgap that enhances tunneling under forward biased conditions. The TJ structure was investigated on both GaN substrates and InGaN templates to study the impact of strain on the TJ I–V characteristics. The resulting TJ I–V and resistivities reported indicate the potential for this TJ approach in several device structures based on III-nitrides. We are not aware of any previous MOCVD grown TJs that show Ohmic performance in both forward and reverse biases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.