Abstract

ABSTRACTThis study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.