Abstract

In the pre-construction of wind farms, wind resource assessment is of paramount importance. Measurements by lidars are a source of high-fidelity data. However, they are expensive and sparse in space and time. Contrarily, Weather Research and Forecasting models generate continuous data with relatively low fidelity. We propose a hybrid approach combining measurements and output from numerical simulations for the assessment of offshore wind. Firstly, the datasets were fed onto a matrix, with columns representing the spatial lidar and WRF points, and the rows representing the time steps. Entries of the matrix reflect the wind speed, empty entries represent unobserved data. Then, matrix factorization using Gaussian process was employed for filling the missing entries with statistically calculated estimates. The model was optimized with stochastic gradient descent to apply GP without approximation methods. To evaluate the method, wind speed data along the coast of Denmark were used. The proposed technique, evaluated using two experiments, resulted in 58% more accurate results than the industrial standard method with trivial increase of computational cost. The RMSE of the proposed method ranges between 0.35 and 0.52 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.