Abstract

SnO is one of the few candidates for p-type oxide thin film transistors (TFTs) because it retains a reasonable high hole mobility in a nanocrystalline film. However, the high off-current of SnO TFT limits its usefulness. In this work, SnO TFTs were fabricated using thermal evaporation under ultra-high vacuum. In order to decrease the off-current in p-type SnO thin film transistors (TFTs), we used yttrium to reduce n-type minority charges in the channel. The on/off ratio of the TFT increases from 102 to 5 × 104 and the mobility of the TFT in the saturated regime reduces from 1.6 to 1.4 cm2/V s when the SnO channel is doped with 1 wt. % of Y. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy reveal that the reduction of SnO2 in the Y-doped SnO TFT channel is the main reason for the improvement in the TFT characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call