Abstract

The synthesis, structure, and temperature dependent thermal and electrical properties of off-stoichiometric polycrystalline modified zinc blende quaternary chalcogenides Cu1.33+xZn1.33-xIn1.33Se4, where x ​= ​0, 0.1, 0.2 and 0.3, are investigated. Temperature-dependent electrical properties reveal these compositions to be semiconductors with alteration of the carrier concentration and electrical transport via stoichiometric variation. The thermal conductivity is low for all specimens and intrinsic to these materials. First principles calculations are also reported in establishing a fundamental investigation that illustrates the large variation in stoichiometry that is possible in these materials. This stoichiometric variation results in the observed variation of the transport properties. The results presented reveal fundamental structure-property relationships in these quaternary chalcogenides, and provides a basis for further research into the viability for large stoichiometric variation in other materials that are of interest for technological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call