Abstract

The temperature dependent electrical and thermal properties including electrical resistivity (ρ), specific heat (CP), Seebeck coefficient (S) and thermal conductivity (κ) have been studied for the polycrystalline NiTi, Ti50Ni40Cu10 and Ti50Ni48.5Fe1.5 shape memory alloys from 10–400 K. It was found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic behavior throughout the temperature range investigated. A significant thermal hysteresis between warming and cooling was observed in all the three alloys which is a manifestation of the first-order nature of martensitic transitions. Our results indicate the presence of two stage martnesite transformations, i.e. B2 → B19 → B19′ for Ti50Ni40Cu10 while B2 → R → B19′ for NiTi and Ti50Ni48.5Fe1.5 alloys. An analysis on the measured thermal conductivity reveals that the anomalous feature in κ at the B19 ↔ B19′ transformation for Ti50Ni40Cu10 is essentially attributed to the electronic contribution, while an enormously large peak in warming run observed at the B19 → B2 transformation is due to the change in lattice thermal conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call