7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1038/s44306-023-00002-3
Copy DOIJournal: npj Spintronics | Publication Date: Dec 13, 2023 |
Citations: 1 | License type: CC BY 4.0 |
Nitrogen-vacancy (NV) centers in diamond offer a sensitive method of measuring the spatially localized dynamics of magnetization and associated spin textures in ferromagnetic materials. We use NV centers in a deterministically positioned nanodiamond to demonstrate off-resonant detection of microwave field-driven GHz-scale oscillations of a single domain wall (DW). The technique exploits the enhanced relaxation of NV center spins due to the broadband stray field noise generated by an oscillating DW pinned at an engineered defect in a lithographically patterned ferromagnetic nanowire. Discrepancies between the observed DW oscillation frequency and predictions from micromagnetic simulations suggest extreme sensitivity of DW dynamics to patterning imperfections such as edge roughness. These experiments and simulations identify potential pathways toward quantum spintronic devices that exploit current-driven DWs as nanoscale microwave generators for qubit control, greatly increasing the driving field at an NV center and thus drastically reducing the π pulse time.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.