Abstract

Precise spatiotemporal control of singlet oxygen generation is of immense importance considering its involvement in photodynamic therapy. In this work, we present a rational design for an endoperoxide which is highly stable at ambient temperatures yet, can rapidly be converted into a highly labile endoperoxide, thus releasing the "stored" singlet oxygen on demand. The "off-on" chemical switching from the stable to the labile form is accomplished by the reaction with fluoride ions. The potential utility of controlled singlet oxygen release was demonstrated in cell cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.