Abstract

To solve the problem that the hydrophone arrays are disturbed by ocean noise when collecting signals in shallow seas, resulting in reduced accuracy and resolution of target orientation estimation, a direction-of-arrival (DOA) estimation algorithm based on iterative EMD interval thresholding (EMD-IIT) and off-grid sparse Bayesian learning is proposed. Firstly, the noisy signal acquired by the hydrophone array is denoised by the EMD-IIT algorithm. Secondly, the singular value decomposition is performed on the denoised signal, and then an off-grid sparse reconstruction model is established. Finally, the maximum a posteriori probability of the target signal is obtained by the Bayesian learning algorithm, and the DOA estimate of the target is derived to achieve the orientation estimation of the target. Simulation analysis and sea trial data results show that the algorithm achieves a resolution probability of 100% at an azimuthal separation of 8° between adjacent signal sources. At a low signal-to-noise ratio of -9 dB, the resolution probability reaches 100%. Compared with the conventional MUSIC-like and OGSBI-SVD algorithms, this algorithm can effectively eliminate noise interference and provides better performance in terms of localization accuracy, algorithm runtime, and algorithm robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.