Abstract

We present an analysis of inelastic off‐fault response in fluid‐saturated material during earthquake shear rupture. The analysis is conducted for 2‐D plane strain deformation using an explicit dynamic finite element formulation. Along the fault, linear slip‐weakening behavior is specified, and the off‐fault material is described using an elastic‐plastic description of the Drucker‐Prager form, which characterizes the brittle behavior of rocks under compressive stress when the primary mode of inelastic deformation is frictional sliding of fissure surfaces, microcracking and granular flow. In this part (part 1), pore pressure changes were neglected in materials bordering the fault. In part 2, we more fully address the effects of fluid saturation. During the rapid stressing by a propagating rupture, the associated undrained response of the surrounding fluid‐saturated material may be either strengthened or weakened against inelastic deformation. We consider poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near a propagating rupture, large increases in pore pressure on the compressional side of the fault decrease the effective normal stress and weaken the material, and decreases in pore pressure on the extensional side strengthen the material. Positive plastic dilatancy reduces pore pressure, universally strengthening the material. Dilatantly strengthened undrained deformation has a diffusive instability on a long enough timescale when the underlying drained deformation is unstable. Neglecting this instability on the short timescale of plastic straining, we show that undrained deformation is notably more resistant to shear localization than predicted by neglect of pore pressure changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.