Abstract

Cell proliferation and differentiation in the rodent uterus are probably controlled by the interaction of female sex steroids with polypeptide growth factors. Uterine basic fibroblast growth factor (bFGF) mRNA was measured by RNase protection during the time (days 2-4) of endometrial cell proliferation in the pregnant rat. bFGF transcripts were detected at each of the 3 days of pregnancy examined. To investigate the influence of oestrogen and progesterone on bFGF mRNA accumulation, ovariectomized rats were treated with oestradiol for 48 h followed by a single injection of oestradiol, progesterone, the two steroids co-injected or oil vehicle alone. Uterine RNA was collected 6 h after the last hormone injection. Steroid treatments increased steady-state uterine bFGF mRNA compared with vehicle control animals as measured by RNase protection. Northern blot analysis of c-fos and c-jun mRNAs from these same treatment groups revealed increased protooncogene expression in the uterus of hormone treated rats compared with the control animals. Temporal analysis of bFGF mRNA in ovariectomized rats at 1, 3 and 6 h after acute oestrogen and oestrogen-progesterone co-administration showed a dual pattern of transcript accumulation. Both hormone treatments increased bFGF mRNA within 1 h compared with vehicle injected rats. Co-administration of the two hormones, however, repressed bFGF mRNA accumulation relative to oestrogen at 3 and 6 h. Together, these studies provide evidence that bFGF control of uterine cell proliferation in pregnant rats can occur from newly synthesized bFGF. Moreover, the results suggest that progesterone is a potent stimulator of bFGF expression in the uterus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.