Abstract

In order to describe the exotic nuclear structure in unstable odd-A or odd-odd nuclei, the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon. For a microscopic and self-consistent description of pairing correlations, continuum, deformation, blocking effects, and the extended spatial density distribution in exotic nuclei, the deformed relativistic Hartree Bogoliubov equations are solved in a Woods—Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r. The formalism and numerical details are provided. The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O. The prolate deformed nucleus 15C is studied by examining the neutron levels and density distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.