Abstract

Soursop (Annona muricata L: Annonaceae) is a small tropical fruit tree native to South America (Pinto, 2005). The flesh of its fruits is widely used as a main ingredient of pastries, even young fruits are used as a vegetable. In June 2022, leaf spots symptoms were observed on fifty soursop plants in a commercial nursery located in Juan José Ríos (25°45'20"N 108°50'21"W), Ahome, Sinaloa State. The incidence of the disease was 75%, while the severity was 12%. Symptoms were round, small black necrotic spots, that grew up to 6 mm in diameter with brown or gray color at the center. Fungal isolation was done on potato dextrose agar (PDA) and Colletotrichum-like colonies were obtained. Five isolates were recovered and purified by single spore culture and only a single morphotype was observed. One random isolate was selected for pathogenicity tests, morphological and molecular characterization. The isolate was deposited in the Culture Collection of Phytopathogenic Fungi of the Biotic Products Development Center at the National Polytechnic Institute under accession no. IPN 13.0102. Colonies in PDA at 25°C grow at a rate of 9.0-14.0 mm/d. After 14 days, the colony was olive to gray with orange conidial masses, and conidia (n =100) were hyaline, aseptate, cylindrical, and straight with rounded ends, measuring 11.5 to 18.5 and 3.5 to 5.5 μm. Appressoria were melanized and circular or oval in shape, measuring 6.0 to 4.0 μm (n=20). According to the morphological characteristics observed, the isolate was placed tentatively within the Colletotrichum gloeosporioides species complex (Weir et al. 2012). For molecular confirmation, genomic DNA was extracted, and the internal transcribed spacer (ITS) region (White et al. 1990), partial sequences of actin (ACT) (Weir et al. 2012) and span style="font-family:'Times New Roman'">glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced. Sequences were deposited in GenBank under the accession numbers: ITS, OQ606966; ACT, OQ617292 and GAPDH, OQ617293. A phylogenetic tree including published sequences of the C. gloeosporiodes species complex was constructed according to Talhinhas and Baroncelli (2021) and the isolate IPN 13.0102 was grouped in a clade with the ex-type culture of C. siamense (ICMP18578) and C. pandanicola. However, C. pandanicola was recorded only as an epiphytic fungus occurring on leaves of Pandanus sp. (Pandanaceae) (Tibpromma et al. 2018) and there are no additional reports of this fungus as a plant pathogen on Pandanus or any other plant. Therefore, the isolate IPN 13.0102 corresponds to C. siamense. Pathogenicity was demonstrated by spraying a conidial suspension (1 × 105 conidia/ml) onto four healthy soursop plants, while two control plants were sprayed using sterile distilled water. All plants were kept in a wet chamber for 48 h at 28  2°C and 85% RH. The characteristic symptoms of the disease were observed 14 days after inoculation, while control plants remained healthy. The pathogenicity test was repeated twice obtaining the same results. The morphology of the recovered fungus was consistently identical to that originally isolated from diseased leaves, fulfilling Koch's postulates. Colletotrichum siamense has been previously reported on Anona spp. in Brazil (Costa et al. 2019). To our knowledge, this is the first report of Colletotrichum siamense causing leaf spots on Annona muricata in Mexico. Further studies for monitoring and control strategies of leaf spots on soursop are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.