Abstract

Zinnia elegans (syn. Zinnia violacea), known as common zinnia, is one of the most spectacular ornamental plants in the family Asteraceae. Zinnia plants are widely cultivated in China for their impressive range in flower colours and profuse bloom over a long period. In April 2019, Zinnia plants grown in Ningbo Botanical Garden (29°56'57″N, 121°36'20″E) were found to have many circular necrotic lesions. In the early infection stage, the lesions appeared as small circular specks which developed later into large spots (15 to 32 mm diameter). Typical symptoms appeared to be grayish white centers with a chlorotic edges and disease incidence reached approximately 80% of plants in the affected field. Moreover, the growth of Zinnia plants was seriously affected by the disease. To identify the causative pathogen associated with the disease, 10 symptomatic leaves were collected from ten different Zinnia plants. Leaf tissues were cut from the lesion margins, surface sterilized with 75% ethanol for 30 seconds and rinsed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 2-3 minutes, washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under the 12 h photoperiod. A total of ten pure fungal isolates were obtained and all the isolates displayed the same colony structure. Afterwards, three pure strains were randomly selected (F1, F3 and F5) for further study. The fungal colonies showed gray to brownish aerial mycelia with pink-colored masses of conidia. Conidia were one-celled, hyaline, cylindrical to subcylindrical, spindle-shaped with obtuse ends, measuring from 15.6 to 17.3 × 4.6 to 5.1 μm with both ends rounded. These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides complex (Weir et al. 2012). The identity of a representative isolate, F3, was confirmed by a multilocus approach. Genomic DAN of isolate F3 was extracted and partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), manganese-superoxide dismutase (SOD2) , glutamine synthatase (GS), beta-tubulin (TUB2) and calmodulin (CAL) were amplified and sequenced as previously described (Weir et al. 2012). These nucleotide sequences were deposited in GenBank (accession MN972436 to MN972440, and MT266559 to MT266561; all sequences in FASTA format are shown (Supplementary S1). BLAST analysis of ITS, ACT, CHS, GAPDH and GS sequences from the F3 isolate revealed similarity to C. gloeosporioides voucher strain ZH01 with 100%, 100%,99%, 99% and 99% identity, respectively. SOD, TUB2 and CAL sequences showed similarity to C. siamense with 100%, 100% and 100% identity, respectively. The phylogenetic trees were constructed by Maximum Likelihood method (ML) using JTT model implemented in the MEGA 7. Results inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, SOD, GS, TUB2 and CAL) placed the isolate F3 within the C. siamense cluster (Supplementary S2). To confirm pathogenicity of the fungus, Koch's postulates were conducted by spraying 20 Zinnia plants (60-day-old) with a 1 × 106 conidia/ml suspension. Plants were maintained in the growth chamber at 25°C and 85% relative humidity. After 10 to 15 days, symptoms were observed on all inoculated leaves and resembled those observed in the field, whereas the control plants remained asymptomatic. Here, C. siamense was isolated only from the infected Zinnia leaves and identified by morphological and gene sequencing analyses. C. siamense has been reported in many crops in China (Yang et al. 2019; Chen et al. 2019; Wang et al. 2019). However, to our knowledge, this is the first report of anthracnose caused by C. siamense on Zinnia elegans in China. References Chen, X., Wang, T., Guo, H., Zhu, P. K., and Xu, L. 2019. First report of anthracnose of Camellia sasanqua caused by Colletotrichum siamense in China. Plant Dis. 103:1423-1423. Wang, Y., Qin, H. Y., Liu, Y. X., Fan, S. T., Sun, D., Yang, Y. M., Li, C. Y., and Ai, J. 2019. First report of anthracnose caused by Colletotrichum siamense on Actinidia arguta in China. Plant Dis. 103:372-373. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115-180. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First report that Colletotrichum siamense causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127-2127.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.