Abstract
Personal care product manufacturers have used a broad spectrum of alternative ocular irritation assays during the past two decades because these tests do not require the use of live animals, they provide reliable predictive data, and they are relatively inexpensive to conduct. To complement these assays, the ex vivo Porcine Corneal Opacity Reversibility Assay (PorCORA) was recently developed using a corneal culture model to predict reversibility of ocular irritants. Three commercially available consumer products (a shampoo, a hair color glaze, and a hair colorant system containing 12% hydrogen peroxide) were each tested in two PorCORA study replicates in order to assess potential ocular damage reversibility for surfactant-, propylene carbonate-, and peroxide-based formulations, respectively. Under the exaggerated, in vitro study conditions, the surfactant-based shampoo may cause irreversible porcine corneal damage (histological changes in the epithelial squamous cell and/or basal cell layers), whereas the hair color glaze and 12% hydrogen peroxide product caused fully reversible ocular irritation (microscopic changes only in the superficial squamous cell layer). The hair color glaze and peroxide product results correlate with established in vivo data for similar compounds, but the shampoo results contradicted previous BCOP results (expected to be only a mild irritant). Therefore, although the PorCORA protocol shows promise in predicting the extent and reversibility of potential ocular damage caused by accidental consumer eye exposure to personal care products, the contradictory results for the surfactant-based shampoo indicate that more extensive validation testing of the PorCORA is necessary to definitively establish the protocol’s reliability as a Draize test replacement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have