Abstract

ABSTRACT Modulatory actions of various biogenic amines and peptides on the locust forewing stretch receptor (SR) were examined. The response of the SR to sinusoidal wing movements was unaffected by physiological concentrations (5×10−8mol l−1) of the peptides AKHI, AKHII, proctolin and FMRFamide. The biogenic amine octopamine, however, enhanced the SR response in a dosedependent manner when injected into the haemolymph of an almost intact animal or perfused over an isolated thorax preparation in which head, abdomen, gut and the entire central nervous system were removed (threshold at 5×10−8mol l−1, maximal effect at 5×10−4mol l−1 DL-octopamine). The SR was as sensitive to D-octopamine, the naturally occurring isomer of octopamine, as it was to DL-octopamine. Serotonin was equal to octopamine in effectiveness, followed in order of potency by synephrine, metanephrine and tyramine. Dopamine was ineffective. Phentolamine, but not DL-propranolol, antagonized the action of octopamine. The threshold of the modulatory effect of octopamine on the SR suggests that the increased haemolymph octopamine level which occurs during flight is sufficient to increase the SR activity. Two observations suggest that dorsal unpaired median (DUM) cells are involved in the octopaminergic modulation of the SR during flight: (1) selective stimulation of these cells modulated the SR response and this effect was blocked by phentolamine; and (2) a number of DUM cells were activated during flight. These results suggest that the SR activity is enhanced by octopamine following the onset of flight. Since the SR is involved in the control of wing beat frequency, the modulation of the SR might influence the generation of the motor pattern in flying locusts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call