Abstract
Soliton microcombs are regarded as an ideal platform for applications such as optical communications, optical sensing, low-noise microwave sources, optical atomic clocks, and frequency synthesizers. Many of these applications require a broad comb spectrum that covers an octave, essential for implementing the f - 2f self-referencing techniques. In this work, we have successfully generated an octave-spanning soliton microcomb based on a z-cut thin-film lithium niobate (TFLN) microresonator. This achievement is realized under on-chip optical pumping at 340 mW and through extensive research into the broadening of dual dispersive waves (DWs). Furthermore, the repetition rate of the octave soliton microcomb is accurately measured using an electro-optic comb generated by an x-cut TFLN racetrack microresonator. Our results represent a crucial step toward the realization of practical, integrated, and fully stabilized soliton microcomb systems based on TFLN.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have