Abstract
The anti-knock or octane quality of a fuel depends on the fuel composition as well as on the engine design and operating conditions. The true octane quality of practical fuels is defined by the Octane Index, Ol = (1-K)RON + KMON where K is a constant for a given operating condition and depends only on the pressure and temperature variation in the engine (it is not a property of the fuel). RON and MON are the Research and Motor Octane numbers respectively, of the fuel. Ol is the octane number of the primary reference fuel (PRF) with the same knocking behaviour at the given condition. In this work a wide range of fuels of different RON and MON were tested in prototype direct injection spark ignition (DISI) engines with compression ratios of 11 and 12.5 at different speeds up to 6000 RPM. Knock Limited Spark Advance (KLSA) was used to characterize the anti-knock quality of the fuel. Experiments were also done using two cars with DISI engines equipped with knock sensor systems. The anti-knock quality of a fuel in the car is inferred from the power/acceleration performance, which changes in response to knock. RON is dominant for fuel anti-knock quality at all engine speeds. Moreover, for low and moderate engine speeds, frequently used on the road, for a given RON, lower MON results in better fuel anti-knock quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.