Abstract

The Research Octane Number (RON) and the Motor Octane Number (MON) are primary fuel properties that characterize gasoline’s knock resistance in spark ignition engines. The utility of these two metrics, however, has been questioned with advancements in engine technologies that significantly change the thermochemical environment inside the cylinder. The Octane Index, OI = (1-K)·RON + K·MON, has therefore been proposed to characterize the knock resistance in modern engines where K weights the relative contribution of the RON and MON and is primarily determined by engine design and operating conditions. Quantifying the K factor is central to understanding a fuel’s anti-knock performance in a modern spark-ignition (SI) engine.This work therefore determines the map of K over engine operating conditions for a 2-litre, 4-cylinder turbocharged, gasoline direct-injection engine. To achieve this, a novel blending system for primary reference fuels (PRFs) was developed to determine K by matching the knock resistance of a 91.6-RON certification gasoline with a PRF at each operating condition. The K values are determined over the engine map with normal and high intake air and coolant temperatures. At normal operating temperature, K is negative at most knock-limited conditions, consistent with previous findings, whereas at high operating temperatures, K is mostly positive and, indeed, exceeds 1 near 8 bar BMEP and 3000 RPM, demonstrating the relevance of the MON at some conditions of practical significance. Further analysis is conducted via engine simulations to examine the relationship between K and end gas conditions, and a strong correlation is observed between K and the unburned gas temperature at the later stages of combustion. This correlation is argued to have a sound physical basis in the engine’s thermochemistry, supporting the utility of this K factor method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.