Abstract

Detailed impedance and voltammetric studies of hexameric octaheme nitrite reductase immobilized on carbon-based nanomaterials, specifically nanotubes and nanoparticles, were performed. Well-pronounced bioelectrocatalytic reduction of nitrite on enzyme-modified electrodes was obtained. Analysis of the impedance data indicated the absence of long-lived intermediates involved in the nitrite reduction. Cyclic voltammograms of biomodified electrodes had a bi-sigmoidal shape, which pointed to the presence of two enzyme orientations on carbon supports. The maximum (limiting) catalytic currents were determined and, by applying the correction by the mixed kinetics equation, the Tafel dependences were plotted for each catalytic wave/each enzyme orientation. Finally, two schemes for the rate-limiting processes during bioelectrocatalysis were proposed, viz. for low- and high-potential orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call