Abstract

There are abundant progenitor cells in the developing pancreas, but molecular markers for these cells are lacking. Octamer-binding transcription factor-4 (Oct4) is an important transcription factor for keeping the features of self-renewal and pluripotency of embryonic stem cells. It's well known that Oct4, as a totipotent stem cells marker, just is expressed in totipotent stem cells. In the present study, we collected ten human fetal pancreases, and found that Oct4 mRNA and protein were expressed in human fetal pancreas samples by RT-PCR, western blot and immunohistochemistry assays. Using double-staining, we demonstrated that Oct4 was not co-expressed with Chromogranin A (a peptide expressed in endocrine cells), but partially co-expressed with Ngn3 (a transcription factor expressed in pancreatic endocrine precursor cells) and Nestin (a intermediate filament, Nestin-positive cells isolated from islets can be induced to express insulin) in human fetal pancreases. Indeed, we prepared Nestin-positive cells from human fetal pancreas by cell selection, and found that these cells expressed Oct4 and Ngn3. The Nestin-positive cells displayed a rapid duplication and could differentiate into osteoblasts, fat and endocrine cells in vitro. These results indicated that the Nestin-positive cells in the fetal age should be pancreatic progenitor cells. Overall, our study suggested that Oct4 was a marker for pancreatic endocrine progenitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.