Abstract

Based on a vast set of in situ data, a first comprehensive overview of the oceanographic characteristics of Baía de Todos os Santos (BTS) is provided. BTS is the second largest coastal bay in Brazil (maximum area of 1223 km² and average depth of 9.8 m), and is located in the northeast Brazil, in the vicinity of Salvador city. The circulation inside the bay is mostly tidally driven and does not vary significantly throughout the year. On the other hand, the wet (winter) and dry (summer) seasons does alter significantly the distribution of water properties inside the BTS. During summer, the waters inside the bay have oceanic characteristics, with Tropical Water (TW) penetrating along the whole region, except for the mouth of Rio Paraguaçu. The water temperature inside the bay is higher than in the coastal zone, and variations can be up to 3°C, reaching a maximum of nearly 30°C. During winter, with the increase of freshwater inflow, salinity variations of about 4 are observed between the innermost stations inside BTS and the adjacent coastal region. Salinity values inside the bay can be as low as 32.3, inhibiting the penetration of TW into the BTS, which is totally occupied by a locally formed Coastal Water (CW). An evaluation of the flushing time is also provided and shows that during summer, a 60-fold increase can be observed compared to winter (38 days). While the circulation does not vary seasonally inside the bay, the associated inner shelf is characterized by two different scenarios. During summer, the upwelling favorable easterlies drive a southwestward flow, while during winter the more frequent occurrence of cold fronts (southerly winds) tend to reverse the circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.