Abstract

Abstract The transhemispheric and interbasin response to time-dependent wind forcing localized in the Northern Hemisphere of a single basin is examined using the reduced-gravity shallow-water equations in domains of simple geometry. On decadal timescales, the pressure on the eastern boundary fluctuates synchronously in both hemispheres and thus communicates a signal to latitudes distant from the forcing. The signal then penetrates into the interior through westward radiation of Rossby waves. Associated with the eastern boundary pressure fluctuation is a time-dependent mass flux across the equator that, in a single basin, is balanced by a storage of mass in the unforced hemisphere. Two oceanic basins connected by a reentrant channel at the high-latitude edge of the Southern Hemisphere are then considered. Again the forcing is confined to the Northern Hemisphere of one basin only. In this geometry the time-dependent mass flux across the equator of the forced basin is not entirely balanced within the same basin, but induces a mass flux into the unforced basin, while the mass heaving within the periodic channel is negligible. This process is illustrated by considering winds oscillating at a period on the same order as the Rossby wave transit time in high latitudes. The interhemispheric and interbasin teleconnection is achieved by a combination of long Rossby waves and large-scale, low-frequency gravity waves forced by the Rossby signal. These disturbances share no characteristics of Kelvin waves; that is, they are not boundary trapped.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.