Abstract

Global oceanic deposits of methane gas hydrate (clathrate) have been implicated as the main culprit for a repeated, remarkably rapid sequence of global warming effects that occurred during the late Quaternary period. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood, and existing studies focus on deep hydrate deposits under equilibrium conditions. In this study, we simulate the dynamic response of several types of oceanic gas hydrate accumulations to temperature changes at the seafloor and assess the potential for methane release into the ecosystem. The results suggest that while many deep hydrate deposits are indeed stable under the influence of rapid seafloor temperature variations, shallow deposits, such as those found in arctic regions or in the Gulf of Mexico, can undergo rapid dissociation and produce significant carbon fluxes over a period of decades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call