Abstract

Compared with the deeply buried marine gas hydrate deposits, gas hydrates in the shallow subsurface, close to and at the seafloor, have attracted more attention owing to their concentrated distribution, high saturation, and easy access. They accumulate at relatively shallow depths <100–120 m and occur as gas hydrate-bearing mounds (also known as hydrate outcrops, pingoes) at the seafloor derived from the growth of hydrates in the shallow subsurface or as pure hydrate chunks formed by gas leakage. This paper reviews and summarizes such gas hydrate systems globally from the perspective of gas sources, migration pathways, and accumulation processes. Here, we divided them into four categories: fault-chimney-controlled, diapir-fault-controlled, fault-controlled, and submarine mud volcano-controlled deposits. Gas chimneys originate immediately above the restricted regions, mostly affected by faults where high gas concentrations trigger elevated pore fluid pressures. Diapirism derives a dendritic network of growth faults facilitating focused gas discharge and hydrate formation near the seafloor. Furthermore, pre-existing faults or fractures created by overpressured gas from greater depths in accretionary tectonics at convergent margins act as preferential pathways channeling free gas upwards to the seafloor. Gas flux rates decrease from the submarine mud volcano center to its margins, creating a concentric pattern of distributing temperature, gas concentrations, and hydrate contents in shallow sediments around the mud volcano. Hydrate-bound hydrocarbons are commonly of thermogenic origin and correspond to high-background geothermal conditions, whereas microbial gas is dominant in a few cases. The presence of heavier hydrocarbons mitigates the inhibition of hydrate formation by salt or heat. Fluid migration and pathways could be compared to the “blood” and “bones” in an organic system, respectively. The root of a pathway serves as the “heart” that gathers and provides considerable free gas concentrations in a restricted area, thereby triggering pore fluid pressures as one important drive force for focused fluid flow in impermeable sediments (the organic system). Besides the suitable temperature and pressure conditions, a prerequisite for the formation and stability of hydrate deposits in the shallow subsurface and at the seafloor is the sufficient supply of gas-rich fluids through the hydrate stability zone. Thus, the proportion of gas migrating from deep sources is significantly larger than that trapped in hydrates. As such, such marine hydrate deposits seem more like temporary carbon storage rather than the main culprit for climate warming at least in a short period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.