Abstract
Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences1-3 despite both periods undergoing similar changes in global mean temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation7, understanding why LIG global mean sea level may have been six to ninemetres higher than today has proven particularly challenging2. Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves8. This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to ongoing changes in the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales16, with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin9,12,17. Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least fourmetres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.