Abstract

To explain the oscillatory nature of El Nino/Southern Oscillation (ENSO), many ENSO theories emphasize the free oceanic equatorial waves propagating/reflecting within the Pacific Ocean, or the discharge/recharge of Pacific-basin-averaged ocean heat content. ENSO signals in the Indian and Atlantic oceans are often considered as remote response to the Pacific SST anomaly through atmospheric teleconnections. This study investigates the ENSO life cycle near the equator using long-term observational datasets. Space-time spectral analysis is used to identify and isolate the dominant interannual oceanic and atmospheric wave modes associated with ENSO. Nino3 SST anomaly is utilized as the ENSO index, and lag-correlation/regression are used to construct the composite ENSO life cycle. The propagation, structure and feedback mechanisms of the dominant wave modes are studied in detail. The results show that the dominant oceanic equatorial wave modes associated with ENSO are not free waves, but are two ocean-atmosphere coupled waves including a coupled Kelvin wave and a coupled equatorial Rossby (ER) wave. These waves are not confined only to the Pacific Ocean, but are of planetary scale with zonal wavenumbers 1–2, and propagate all the way around the equator in more than three years, leading to the longer than 3-year period of ENSO. When passing the continents, they become uncoupled atmospheric waves. The coupled Kelvin wave has larger variance than the coupled ER wave, making the total signals dominated by eastward propagation. Surface zonal wind stress (x) acts to slow down the waves. The two coupled waves interact with each other through boundary reflection and superposition, and they also interact with an off-equatorial Rossby wave in north Pacific along 15N through boundary reflection and wind stress forcing. The precipitation anomalies of the two coupled waves meet in the eastern Pacific shortly after the SST maximum of ENSO and excite a dry atmospheric Kelvin wave which quickly circles the whole equator and leads to a zonally symmetric signal of troposphere temperature. ENSO signals in the Indian and Atlantic oceans are associated with the two coupled waves as well as the fast atmospheric Kelvin wave. The discharge/recharge of Pacific-basin-averaged ocean heat content is also contributed by the two coupled waves. The above results suggest the presence of an alternative coupled wave oscillator mechanism for the oscillatory nature of ENSO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.