Abstract
AbstractThe South Atlantic Ocean is an important region for anthropogenic CO2 (Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression method with six characteristic water masses to estimate Canth change or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin‐wide ΔCanth was 3.86 ± 0.14 Pg C decade−1. The two basins flanking the Mid‐Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanth in the top 2000 m of 0.91 ± 0.25 mol m−2 yr−1 along A16S on the west and 0.57 ± 0.22 mol m−2 yr−1 along A13.5 on the east. The west‐east basin ΔCanth contrasts were most prominent in the tropical region (0–20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (Subantarctic Mode Water (SAMW)), and all latitudes in the Antarctic Intermediate Water (AAIW). Less ΔCanth in the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canth increase rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air‐sea CO2 exchange in the South Atlantic Ocean.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have