Abstract

The UV/H2O2 process is a benchmark advanced oxidation process (AOP) that in situ generates highly reactive and nonselective hydroxyl radical (•OH) to oxidatively destroy a wide range of organic compounds. Accurately quantifying the concentration of short-lived •OH is essential to predict process performance, optimize the operation parameters, and compare with other process options. The •OH concentration is typically measured using organic probe molecules that react with •OH but not with other oxidants. In the extremely well-characterized UV/H2O2 system in which •OH is proven to be the dominant oxidant, using photolysis-resistant probes such as benzoic acid and its derivatives is a widely agreed and practiced norm. We herein report that certain •OH probe compounds can be degraded in UV/H2O2 system by unknown reactive species that has not been reported in the past. Several common organic probes, particularly p-substituted benzoic acid compounds (i.e., p-hydroxybenzoic acid, p-chlorobenzoic acid, and p-phthalic acid), were found to be vulnerable to attack by the unknown reactive species, leading to false quantification of •OH concentration under high radical scavenging conditions. Lines of evidence obtained from a series of •OH scavenging experiments performed under various conditions (i.e., different concentrations of H2O2, •OH probe compounds, and dissolved oxygen) point toward excited state H2O2. The results from this study suggest the importance of using appropriate •OH probe compounds in mechanistic studies and needs for considering the unidentified role of excited state of H2O2 on the UV/H2O2 process and related AOPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call