Abstract

Abstract. The global marine biogeochemical cycle of aluminium (Al) is believed to be driven by marine diatoms, due to the uptake of dissolved Al (DAl) by living diatoms from surface seawater. The occurrence of Al in diatom biogenic silica (BSi) can inhibit the dissolution of BSi, thus benefiting the effects of the ballast role of diatoms in the biological pump and forming a coupled Si–Al biogeochemical cycle. However, the occurrence characteristic of Al in marine diatoms is still unclear. In particular, whether or not Al is incorporated into the structure of BSi of living diatoms is unrevealed, resulting in difficulties in understanding the biogeochemical behaviours of Al. In this study, Thalassiosira weissflogii, a widely distributed marine diatom in marginal seas, was selected as the model to evaluate the occurrence of structural Al in BSi based on culturing experiments with the addition of DAl. The structural Al in BSi was detected by combining focused ion beam (FIB) scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) mapping analysis. Visible, direct evidence of structural Al in living BSi was obtained, and the distribution and content of this Al were revealed by the EDS-mapping analysis. The effects of structural Al on BSi dissolution–inhibition are discussed based on the content of this Al. The fundamental results indicate the significant contribution of marine diatoms to the biogeochemical migration of marine Al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call