Abstract

Coffee, one of the most widely consumed beverages in the world, is commercialized as powder and beans in different types of packaging and extracted through several methods. In this regard, the present study focused on evaluating the concentration of two of the most used phthalates in plastic materials (bis(2-ethylhexyl)phthalate (DEHP) and di-butyl phthalate (DBP)) in coffee powder and beverages to assess their migration from different packaging and machines. Furthermore, the levels of exposure to these endocrine disruptors in regular coffee consumers were estimated. Samples of packaged coffee powder/beans (n = 60) from different forms of packaging (multilayer bag, aluminum tin, and paper pod) and coffee beverages (n = 40) that were differently extracted (by professional espresso machine (PEM), Moka pot (MP), and home espresso machine (HEM)) were analyzed by extraction of the lipid fraction, purification, and determination by gas chromatography-mass spectrometry (GC/MS). Risk due to consumption of coffee (1-6 cups) was assessed based on tolerable daily intake (TDI) and incremental lifetime cancer risk (ILCR). No significant differences emerged in DBP and DEHP concentrations among different types of packaging (multilayer, aluminum, and paper), whereas higher levels of DEHP were reported in beverages extracted by PEM (6.65, 2.58-11.32) than by MP (0.78, 0.59-0.91) and HEM (0.83, 0.62-0.98). The presence of higher DEHP levels in coffee beverages than in coffee powder may be due to its leaching through machine components. However, the levels of PAEs did not exceed the specific migration limits (SMLs) set out for food contact materials (FCM), and exposure to PAEs from coffee beverages was low, justifying the small risk due of its consumption. Consequently, coffee can be considered a safe beverage for exposure to some phthalic acid esters (PAEs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.