Abstract

The class G oil well cement is a type of special cement that can be subjected to a high temperature formation environment. It was found that the class G cement tail slurry with a low polycarboxylic retarder dosage (usually ≤1% by weight of cement) was more prone to cause the abnormal gelation phenomenon (AGP) than the lead slurry with a high retarder dosage at a high temperature (usually when T ≥ 120 °C). This study aimed at the occurrence mechanism of this unfavorable phenomenon that seriously endangers the cementing security. Results showed that the abnormal gelatinous region underwent premature hydration; namely, the calcium hydroxide and calcium silicate hydrate (C-S-H) content were all higher than the nongelatinous region, while the copolymer content was the opposite. Correspondingly, the theory of "premature hydration and crystal nucleation" was proposed to explain the abnormal gelation mechanism of a cementing tail slurry with an insufficient retarder dosage. Furthermore, a novel functionalized copolymer retarder "PAIANS" was synthesized to alleviate the AGP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.