Abstract

Much of the current research on concrete engineering has been focused on including siliceous additions as supplementary cementitious materials (SCMs). Silica reacts with Calcium hydroxide release during cement hydration, and produces more C-S-H. The latter contributes to increase compactness, mechanical strengths and sustainability of concrete. This paper explores the hydration characteristics of cement paste based on various natural mineral additions, that are very abundant in Algeria and present a high silica content (ground natural pozzolana “PZ” and ground dune sand “DS”). For this purpose, several analyses were carried out on modified cement pastes and mortars. TheseSCMswere introduced by replacement levels of 15, 20 and 25 by weight of cement. We first, studied the effect of these SCMs on the heat of hydration and mechanical strength of mortars at different ages. The evolution of hydration of modified paste was studied, by using Thermal analysis (TG/TDA) at different ages, to analyze the Calcium Hydroxide (CH) content of the modified pastes. It is shown that the CH content of the mixes including SCMs is lower than that of the plain cement paste, indicating that silica reacts with the cement paste through a pozzolanic reaction. Increased pozzolanic activity results in higher amounts of Calcium Silicate Hydrate in the paste, which in turn results in higher compressive strength for modified cement mortars. Due to its crystalline morphology, the ground DS particles present a partial pozzolanic effect, compared to PZ which is semi-crystalline. Modified mortars by 20% DS can be the optimal composition. It presents satisfactory results: good mechanical strength and low heat of hydration. It can lead to an economic and sustainable concrete. Ground DS is very abounded in Africa and free of any impurities and can be a good alternativeSCMsin cement industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call