Abstract

AbstractPolar cap patches are islands of enhanced electron density in the polar cap F region ionosphere, which sometimes affect the propagation of trans‐ionospheric radio waves. Considering the intake of daytime sunlit plasma by the high‐latitude convection as the primary cause of patches, the spatial overlap between the convection and the daytime sunlit plasma should be one of the critical factors controlling the generation of patches. To confirm this hypothesis, we statistically investigated the UT and seasonal distributions of patch occurrence frequency in both the hemispheres by using in situ plasma density data from the Swarm satellite. As a result, it was found that the occurrence distribution of patches is a complex function of UT, season and hemisphere, but it can be mostly interpreted by the spatial overlap between the high‐latitude convection and the solar terminator. This suggests that polar cap patches are not necessarily phenomena that occur only during winter months. That is, patches can often be observed even in periods away from the winter solstice if the location of solar terminator in the magnetic coordinate system is appropriate for the generation of patches. For example, in the southern hemisphere, where the offset between the geographic and magnetic poles is larger than that in the northern hemisphere, the highest patch occurrence rate is obtained around the equinoctial periods. These results indicate that it is needed to take these dependences into account when we discuss and predict the space weather impacts of patches on the trans‐ionospheric radio propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call