Abstract

Antibiotic resistance genes (ARGs) are emerging environmental contaminants and pose a threat to public health. In this study, four tetracycline resistance genes (tetM, tetO, tetQ and tetW) and two sulfonamide resistance genes (sulI and sulII) were evaluated in 4 municipal wastewater and 8 rural domestic sewage treatment systems with different wastewater handling abilities and treatment processes using quantitative polymerase chain reaction (qPCR). In the influents, the relative abundance of different ARGs showed significant variations among the sampling sites. In addition, significant correlations (tetQ: R2=0.712, P<0.05; tetO: R2=0.394, P<0.05) between the gene copy numbers and wastewater-receiving capacity were observed. Statistical analysis revealed a positive correlation (R2=0.756, P<0.05) between the gene copy numbers of sulI and intI1, whereas the gene numbers of tetM and sulI were strongly correlated with 16S rDNA. Significant reductions (1–3 orders of magnitude) in ARGs were observed in municipal wastewater treatment systems, but a smaller reduction was found in the rural domestic sewage treatment systems. These results provide insights into the occurrence and removal of ARGs in wastewater treatment systems in both rural and urban areas in eastern China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call